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The adequacy of direct one-step chemical kinetics for describing ignition and 
extinction in initially unmixed gases is studied through the particular case of 
inviscid axisymmetric stagnation-point flow. Oxidant is assumed to blow from 
upstream infinity at a lion-gaseous reservoir of pure fuel at its boiling (or subli- 
mating) temperature. Before reaching the reservoir the oxidant reacts with 
gaseous fuel flowing in the opposite direction to form product and release heat. 
This heat is in part conducted and diffused to the reservoir interface to transform 
more fuel into the gaseous state and continue the steady-state burning. Second- 
order Arrhenius kinetics for Lewis-number unity is examined. A critical para- 
meter characterizing the phenomenon is shown to be the first Damkohler 
similarity group D,, the ratio of a time characterizing the flow to a time character- 
izing the chemical activity. 

For small D, the reactants convect away heat without releasing the energy 
stored in their chemical bonds. Regular perturbation about chemically frozen 
flow establishes this condition as the weak burning limit. For large D, singular 
perturbation describes a narrow region of intense chemical activity. For infinite 
D, (indefinitely fast rate of reaction) the region is reduced to a surface of dis- 
continuity (the thin-flame kinetics of Burke & Schumann). 

For intermediate D, numerical techniques establish that a solution describing 
burning of moderate intensity joins the two previously mentioned asymptotic 
limits. It is suggested that sudden transition of the system between the various 
branches in this domain of intermediate D, accounts for the phenomena of 
ignition and extinction of burning. 

1. Introduction 
Burning may be categorized as involving either a homogeneous mixture of 

reactants combined before combustion, or a reaction between initially unmixed 
reactants that combine a t  the flame. Only slow burning is possible in the un- 
premixed case, to be studied here, because only those fuel molecules a t  the 
flame region are accessible to oxidant molecules. For unpremixed gases classical 
one-component analysis is inadequate-a complete description involves recog- 
nition of the multicomponent nature of the flow. Diffusion then joins the entropy- 
producing mechanisms of heat conduction and viscosity. 

‘Flame’ is used in the general sense of a region where appreciable chemical 
reaction occurs. The geometry, temperatures, and propert.ies of gases to be 
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studied render radiation negligible. Furthermore, attention is confined to 
homogeneous kinetics in the gaseous phase because the two-phase interface is 
at  too low a temperature and accessible to too small a fraction of the oxidant for 
appreciable reaction to occur there. 

In  most treatments of chemically reacting flows, discussion centres around 
two opposing limits: ( 1 )  frozen flow for zero rate of reaction, and (2) equilibrium 
flow for infinite rate of reaction. The frozen limit refers to conditions in which 
the time for a reaction-inducing collision to occur is much longer than the time 
for an element of reactant to flow through the flame. Virtually no creation or 
destruction of a species occurs so the chemical terms vanish. For unpremixed 
flow in which the rate of reaction is infinite and in which reaction can proceed in 
only one direction, chemical equilibrium cannot be set up until the gases come 
into physical contact. Then they instantaneously react on the surface of contact 
to form an indefinitely thin region of chemical activity. Intuitively, in the 
steady state the interface of contact will lie at points in the flow at which the 
gases meet in stoichiometric proportion so that the reaction goes to immediate 
completion. For finite rates of reaction the details of the chemical kinetics must 
be specified. 

2. Equations 
If the model of independent co-existent continua, each obeying the laws of 

dynamics and thermodynamics, is adopted, then a complete Eulerian description 
would involve solution of the following equations: 

v .  (pv) = 0 ,  (2.1) 

pv.vv = -VP, (2.2) 

pv.VY,-V. (pDVYK) = wg ( K  = 1,2 ,  ..., n),  (2.3) 

pv.V(CpT)-V.(AVT) = -Ch(+,, (2.4) 
I< 

plus an equation of state.? Here v is the velocity vector, T the temperature, 
p the density and P the pressure of the gas. The heat flux has been taken as 
linearly proportional to temperature gradient, h being the proportionality factor, 
Similarly, the diffusional velocity of species K has been taken linearly propor- 
tional to gradient of mass fraction of species K ,  Y,. Here the proportionality 
factor D, sometimes referred to as the mass transfer coefficient, has been taken 
as universal for the n species present. The mass fraction YK = pK/p, where p K  is 
the density of species k and p = C p K .  It can be shown (Fendell 1964) that 

equations (2.1)-(2.4) can describe a wide range of steady flows in the absence of 
body forces, in which thermal effects are pronounced but the dynamics are 
approximately those of a non-reacting gas at  large Reynolds number but small 
Eckert number ( jvjz/CpT). The Schmidt number of the gas (,u/pD) is order unity 
and the Peclet number of the flow (p IvI C,L/A, where L is a typical length) not 
very large. The enthalpy of formation at temperature To is hE and is taken to be 

t A list of symbols is given a t  the end of this article. In this connection see also Nachba,r, 

K 

Williams & Penner (1959). 
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the dominant portion of the enthalpy of any species h', assumed expressible as 
CF(T - T,) + hF. The net heat capacity at  constant pressure C, = C CFY,. The 

net production of mass of species K per unit time wg is in general a non-linear 
function of the temperature T and mass fractions Yg. 

Equations (2.1) and (2.2) are the familiar Euler equations representing global 
(i.e. net over-all-species) conservation of mass and linear momentum. Equation 
(2.4) is the global conservation of energy, in which convective and conductive 
transport of thermal energy appears along with the heat released by chemical 
reaction, here taken as exothermic. Equations (2.3) represent conservation of 
mass for each of the TL independent species present: convection and diffusive 
transport of mass appears along with the source-sink-like effect of chemical 
reaction. 

IC 

3. Approximations 
In  aerothermochemical problems solution is usually attained by separating 

the dynamics from the thermodynamics. The only rigorous means of separation 
for the stagnation-region flow is by adopting p = const. as the equation of state; 
this should not compromise the fundamental physics. It is consistent to adopt 
constant values for the transport coefficients. 

The adoption of direct chemical reaction between the initial reactants should 
roughly reproduce the net effect of many simultaneous reactions involving 
intermediates. By definition 

wK = m,(dM,/dt), 

where mK is the molecular weight of species K and MK the molar concentration. 
If the direct reaction is represented by 

n 

where i>F is the stoichiometric coefficient of the reactant K and vg, of the product 
K ,  then dNK/dt = ( v F  - v F )  (r.r.) 
where (r.r.) = the rate of reaction. Further, if 

and AH, = C mKhF(vF - vB) = specific heat released through combustion, and 

if FK = aK&, then equations (2.3) and (2.4) become 
K 

(v.V -DV2) FK = - m(r.r.)/p ( K  = 1,2,  ..., n) ,  (3.1) 

(3.2) (v.  V - xV2) T = AH<!(r.r.)/pC,, 

where C, has been taken as constant, and x = h/pC,. 
If the inviscid incompressible flow problem can be solved, then v serves as 

a variable coefficient in the remaining equations (3.1) and (3 .2) ,  in which all the 
non-linearities are confined to the rate of reaction (rx.). Schvab and Zeldovitch 
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(see Zeldovitch 1951) were the first to notice 2n integrals of the ( 2 n  + 2 )  remaining 
could be found from solution of a convection-diffusion balance if D = x. In  the 
literature this step is described as taking the Lewis-Semenov number, L e  = D / x ,  
as unity and is in general a good approximation provided no component of the 
n present has a molecular weight significantly lower than the other species 
present (for air L e  z 1.4 until high temperatures). The equations (3.1) and (3.2) 
are then, for example 

( v . V - x V 2 )  (FK+mCpT/AHc) = 0 ( K  = 1,3, ..., ?2), (3.3) 

(3.4) (v .V - xV2) T = AHc(r.r.)/pCp. 

4. Axisymmetric geometry 
For axisymmetric flow without swirl under p = const., the governing set 

(2.1), (2 .2 ) ,  (3.1), and (3.2) becomes in terms of cylindrical-polar co-ordinates 
( r ,  8, x )  with velocity components (u, o, w): 

a(ur)/& f a(rw)/ax = 0, (4.1) 

LU = - p a p / & ,  (4.2) 

LW = -p-1 aPja2, (4.3) 

(4.4) 

where L = u(a/ar) + w(a/ax). 
The geometrical arrangement is given in figure 1. For -a < z 9 z, there is 

a reservoir of pure liquid (or solid) fuel uniformly a t  its normal boiling (or 
sublimation) temperature. The reservoir interface will henceforth be called the 
wall and denoted 2,. For a direct unopposed reaction it is incompatible to 
demand that the reservoir be pure fuel at its boiling temperature; the Clausius- 
Chapeyron equation should be allowed to establish what the interface tempera- 
ture is. The error in adopting the boiling temperature-a great analytic con- 
venience-can be shown to be slight except when virtually no reaction occurs 
(Fendell 1964) and then there exists pure diffusive convection, an extensively 
studied phenomenon. As a result of the approximation it will be necessary to 
maintain the upstream oxidant temperature above the fuel boiling temperature 
for a physically meaningful solution to exist in the nearly frozen limit. This 
requirement is plausible, for if it is demanded that the wall temperature be 
maintained at  a boiling level without the availability of heat from reaction, the 
only possible means of realizing the situation in the steady state for the specified 
geometry is to have a hot upstream flow of oxidant. 

Because oxidant is being blown downstream and fuel is moving upstream, 
there will occur a stagnation plane in the axisymmetric flow postulated, hence a 
natural origin for the z co-ordinate. Fuel must diffuse against convection for 
z > 0 and oxidant likewise for z < 0. Both reactants cross the stagnation plane 
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by diffusion only. Fresh reactants moving by diffusive and convective transport 
toward the flame are preheated by conduction and by diffusing products. 

In  the assumed absence of vortex sheets symmetry requires that the flow for 
all x, 6 z < 0 be the mirror image of the inviscid incompressible axisymmetric 
stagnation point flow for x 2 0. The solution to (4.1)-(4.3) is then well known to 
be v = V x (  - +6/r)  where + = ar2x and P / p  = - ia2(r2 + 4x2). 6 is a unit 
vector in the azimuthal direction, (Pip),, an arbitrary datum, and GG a geometric 
scale factor which gives the magnitude of the upstream blowing. 

FIGURE 1. Oxidant, fuel, and product particle lines in an axially symmetric 
stagnation-region flow. 

If equations (4.4) and (4.5) are added after substitution for u and w, and the 
solution sought to the resulting equation by separation of variables in the form 

(4.6) 
where r = (a/D)*r and Z = (2a/D)&x, there results 

R"+(l/?-?)R'+nR = 0, (4.7) 

GR(?, Z) = FK + mCpT/AHc = R(F) Z(Z), 

in which n is a separation constant. 
Since F = 0 is a regular singular point, only one regular solution to (4.7) exists. 

If equation (4.7) is rewritten in terms of r" = ? / 4 2 ,  Hermite's equation is found 
for large F ,  and only the lowest Hermite polynomial, corresponding to n = 0,  
satisfies requirements of boundedness of the remaining regular solution. Thus 
FK(F, 2 )  +F&) and T(F, 2 )  + T(2). 

5. Chemical kinetics 

where d ,  b, and p are stoichiometric coefficients. If 
Attention is now confined to the burning of fuel in oxidant so d P  + bO 4pP 

y,, = Yoao where (ao)-l = bmo/m and YE' = YFaF 
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where (as)-, = dm,/m and m = dm,+bmo, 

then equations (4.4) and (4.5) reduce to 
- 

LTo = LyF = -LT = (r.r.)m/2up, (5.1) 

where L = X dldZ + d2/dX2. The product mass fraction Yp = 1 -Yo - YF by defini- 
tion, and T = AhcT/cc,Cp and Ah, = AHc/dm,. 

Two models for the reaction rate are considered. The first uses second-order 
Arrhenius kinetics in which (rx.) = Bp2bdY, Yo exp ( - BIT) where B is the acti- 
vation temperature and e the frequency factor. The other model proposed by 
Burke & Schumann (1928) reduces the flame to a mathematical interface across 
which derivatives of the dependent variables may be discontinuous. This flame 
without structure is usually expressed in terms of the following conditions: 

- -  

- - 
Y O ( z * )  = Y F ( X * )  = 0, (5.2) 

The position of the planar thin flame is denoted by Z* and is to be found in the 
course of solution, along with T*[ = T(?&)]. Equations (5 .2 )  and (5.3) state that 
the reactants meet in stoichiometric proportion and are destroyed at the thin 
flame, at which all mass transport is by diffusion and all heat transport by 
conduction. 

6. Boundary-value problems 

The first problem employs second-order Arrhenius kinetics 
The precise relation between two boundary-value problems will be examined. 

- L ~ = L ~ ~ = L ~ ~ = D , ~ ~ , , F ~ e x p ( - ~ / T )  in Zwz ,<za ,  (6.1) 

where L = d2/dX2 + Z dld.5 and 
time characterizing flow p b d s  

time characterizing chemistry 2am 
D, = first Damkohler number = =-. 

(6.2) 

For D, small the flow is nearly frozen and regular perturbation yields the first 
effects of reaction on a diffusion-convection balance ( 5  8). For D, large a narrow 
region of intense reaction is surrounded upstream and downstream by diffusive 
convection; singular perturbation in the form of inner and outer expansions 
treats this asymptotic limit (3 9). For intermediate D, all three effects of reaction, 
convection, and diffusion are important and owing to intractable non-linearities 
numerical integration will be used (8 10). 

The second problem examines Burke-Schumann kinetics 

LT = LY, = LYo = 0 ?,,,, z, 5 < co, (6.3) 
- - 

in 

except at  Z = X*, where equations (5 .2 )  and (5.3) hold. This problem is treat,ed 
in 3 7 .  
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The boundary conditions for both problems are 

2, Fo + dFo/dZ = 0, 

Z,(FF - a>-) + dFF/dZ = 0. 

(6.7) 

16.8) 

Equation (6.6) is the adiabatic vaporization condition, and (6.7) and (6.8) state 
that the reservoir remains pure fuel. The ratio of heat of vaporization to heat of 
combustion is denoted by L. 

Whenever numerical results are sought, parameter values appropriate to the 
burning of acetone in air are used: 

(CH,),CO + 402+ 3(H20 + CO,) 

d = 1, = 186, = 0.3371, T,  = 0.0593, 

b = 4, a F  = 3.207, 0 = 2.441, L = 0.0169, 

p = 3, a0 = 1.453, Tm = 0.0700, Cp = 0.4118B.Th.U./lb. OR. 

- 

hh,/aFC, = 1.002 x 104'R, D = 0-0908 in.,/sec at 1800 OR, 
B = 1-08 x 1012I/moIesec. p = 6.416g/l, 

Relatively few analytic studies of burning in unpremixed gases exist for finite 
rate-of-reaction kinetics. Zeldovitch (1951), Spalding (1954,1961)) and Spalding 
& Jain (1962) claim to have detected suggestions of extinction conditions in the 
general properties of Arrhenius kinetics. Agafanova, Gurevich & Paliev (1958) 
tried to find extinction conditions by numerical integration for a fuel drop in an 
oxidant atmosphere but the results were indecisive. Lorell, Wise & Carr (1956) 
attempted the same solution and interpreted non-existence of solutions as B 
increased as proof of extinction. This statement implies some reactions are 
always extinguished, others never. Furthermore, their assertions that 8 + 0 
carries second-order Arrhenius kinetics to Burke-Schumann kinetics is incorrect; 
I), --f a will be shown to effect the transition. Marble & Adamson (1954) used 
series-expansion techniques for a laminar mixing zone and Dooley (1956) simi- 
larity theory for a flat plate; both these works establish conditions under which 
reaction enters a balance of diffusion and convection, and ignition occurs. 

In  several papers of the later 1950's boundary-layer-like regions of sharp 
transition in basically smooth equilibrium profiles were recognized from 
numerical treatments of high rate-of-reaction limits. Lenard (1962) seems to 
have been the first to apply the schematics of inner and outer expansions in 
treating a chemically reacting flow in the limit of large first Damkohler number. 
Lenard discussed rapid relaxation to chemical equilibrium behind a shock. 
Linan (1963), arguing by physical intuition, has treated the laminar mixing zone 
in the large D, limit and found qualitative features in Arrhenius-kinetics solu- 
tions that hint at extinction conditions. Chin (1962) was the first to obtain the 
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Burke-Schumann solution for stagnation-region burning in initially unmixed 
reactants but his claims of finding exact extinction criteria for finite-rate kinetics 
are spurious. A correct formulation along the same lines as Chin's was carried 
out by Chambre (1956) to find the no-heat-transfer conditions in a premixed 
two-dimensional viscous stagnation-like flow toward an impermeable wall. 

7. Thin-flame solution 

to ( 6 . 3 )  
The solution under Burke-Schumann kinetics is now presented. According 

= A,erf(Z/,D)+B, (% < 3 < m), i A,erf ( ~ / y l z )  +B, (z, < 3 < z*). 
- 

Similar functional forms holds for FF and p .  If equations (6.4)-(6.8), ( 5 . 2 ) ,  and 
(5.3) are used to identify the constants of integration, 5,, z* ,  and T,, there 
results 

{(Fo),/erfc (Z,/Ja)}{erf (z/,/s) - erf (?*/$)} Yo(?) = 
(z+ Q z Q CO), 

(Z, < z Q Z*); 0 

0 (X* Q z < oo), 
(zU; Q 5 < 

( 
- 

(FF)w,{erf (XI$) - erf(5,j $)]/{erf(zu,/,/2) - erf (z,.J~)) 
- 
YF(Z) = 

- 
T(2) = 

- 
T ,  + (T* - Tm) erfc (z/,/z) 

erfc (Z*/ $2) 
(Z* Q 5 < a); 

( 7 . 2 )  

(7 .3 )  

(7.4) 

The flame temperature !?* is identical with the adiabatic flame temperature, the 
final temperature reached above the initial temperature when the fuel and 
oxidant species are premixed in stoichiometric proportion and then burned 
adiabatically and isobarically until an equilibrium mixture of reactants and 
products is attained. If T* > max[T,,T(z,)], then T never exceeds T* for 
any X for any D,. 

A numerical example of these formulae using the data given in $6 appears 
as figure 2 .  



Com,bustion of initially unmixed reactants 289 

5, 1 0 - 1  

FIGURE 2. Thermal and mass concentration profiles for thin-flame kinetics. Input : 
Fom = 0.3371; pm = 0.0700; piig = 0.0593; EF = 3.207; = 0.0169. Outptlt: 
Z, = - 1.2710; ITFFLo = 2.7292; Z* = 1.2888; T* = 0.3689; ldFF/di?];, = 0.6936. 

- 

8. Nearly chemically frozen flow 
An analytic solution in the asymptotic limit of small chemical activity is 

obtained for equations (6.1) subject to (6.4)-(6.8) by conventional perturbation 
expansion in a small parameter. To lowest order, diffusion balances convection, 
and reaction enters as a forcing function in the first-order solution. The solution 
is valid only for very small values of the expansion parameter e = D, exp ( - 8/Tm). 

For small 6 a solution to equations (6.1) subject to (6.4)-(6.8) is sought in 
the form 

Substitution of (8.1) into (6.1) yields 

(8.3) 

19 Fluid Mech. 51 
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where 

Only the equations for the zero-order and first-order corrections will be treated 
here, though the methods could be continued to any order. The boundary condi- 
tions at infinity are: 

The zero-order boundary conditions at tjhe two-phase interface are 

The solution of (8.2) subject to (8.4) and (8.6)-(8.9) is 

- aF Xw0 erfc (X/J2) 
' '0 = - (2/7r)* exp ( - +zko) - Zwo erfc (~,,/JS) 3 

(8.10) 

(8.12) 

(8.13) 

Since Zu, < 0 is anticipated, equation (8.13) suggests p ,  > pB. If a steady-state 
solution with T(3,) = pB is demanded, the oxidant supply being blown at the 
wall must be relatively hot to continue vaporization because no heat of com- 
bustion is available to continue the vaporization in this frozen limit. The 
physically more suitable boundary condition, the Clausius-Clapeyron equation, 
would yield a wall temperature about 15 % lower than the boiling temperature 
for the acetone-air data given in 5 6, for the near-frozen condition described here. 
For cases in which significant reaction occurs, !F(ZuL+TB and the error is 
appreciably less. For pa > pB7 equation (8.12) gives T,,, at infinity. 
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Insertion of the z, expansion in (6.4)-(6.8) yields the first-order boundary 
conditions a t  the wall: 

- 
T,(z,,,) = - ~ w l d ~ o ( ~ w , , ) / d ~  = zw1(TB - Tm) (2/7r)4 exp ( - $zLo)/erfc ( 2 ~ 4 2 1 ,  

(8.14) 

Solution of the equation for Tl of (8.3) subject to Tl(co) = 0, (8.14) and (8.15) 
requires direct integration and an integration by parts or else a simple application 
of Green’s function theory to obtain 

where q1( t )  = yo,,(,() FF&) exp { - $/To(() + 8/Tm + it”>- By Leibnitz’s rule 

exp ( - 4 z L )  Sl(t) erfc (5/2/2) dS 
- 

-. . (8.19) z,, = - _ _ _ ~ . . .  Jrn %U,Y 

a,Jerfc(zw0/2/2) - (2/n)*.~~,exp ( --zL0/2) (T, - TB)  
+ (2/77) exp ( - 5L,,) (T, - Ts)/erfc (zw0/42) 

Tl is seen to be positive definite so burning augments the temperature for 
5, < < 00. If To(?) were a peaked function, steepest-descent evaluation 
would be suitable but in the present case numerical integration is required. 
Very roughly the inequality eOT,/Tt < 1 used in obtaining successive f, can be 
written as DIP< T,/8) exp (8/rf,) (const.). The series fails for smaller D, if 
z < 1, where L is the ratio of heat of vaporization to heat of combustion. Thus 
the series would fail sooner for octane than for acetone. 

The numerical results for small rates of reaction for acetone-air combustion 
will be presented below after the formalism for other rates of reaction is 
developed. 

-- - 

19.2 
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9. Nearly thin-flame conditions 
For very large but finite D, (typical chemistry time very short relative to 

flow time) a narrow region of intense burning near X+ can be described by the 
inner and outer expansions of a singular perturbation. The maximum 
temperatures realized should be just slightly smaller than the adiabatic flame 
temperature. At positions removed from the immediate vicinity of the steep 
gradients of the flame, the conditions for D, large should be approximately 
those for infinite D, (the Burke-Schumann solution). 

A three-part solution is presented: 
(1) an upstream outer region (between infinity and the flame) where oxidant 

is preheated and fuel is not found; 
( 2 )  an inner region near Z* in which an intense flame occurs and conduction 

and diffusion are the dominant modes of transport; and 
(3) a downstream outer region (between the flame and the wall) where fuel 

is preheated and oxidant is not found. 
If .s = Dcl, for .s = 0, YoYF = 0 everywhere. For the case of interest here, 

e g 1, YoYF = 0 except where the steepness of derivatives overcomes the 
smallness of the multiplicative parameter. In the anticipation that convection 
and diffusion dominate the outer expansions and molecular transports and 
chemical activity the inner expansion, solution of (6.1) subject to (6.4)-(6.8) is 
sought in the form 

- -  
_ _  

(1) upstream outer expansion: 

i f -  1 &, €) = T&), FOU(Z, €) = Fou(Z), FF&, €) = 0; 

Yo&%) = €+&)l(T) + €fyo2(y) + . . .) 

T&,€)-T* = €“,(q)+€Qt2(q)+ ...; 

Td(5, €) = Td(X), Fk&, 6) = T&), To&, E )  = 0; 

(2) inner expansion: 
- 

TJj’i(z> c)  = e’YFl(7’) f EQ gF2(7) $- . . . , 

(3) downstream outer expansion: 

where q = (Z-Z*)/c*. The lowest-order outer term will match more and more 
exactly as successive terms are added to the inner expansion. As a result the 
higher-order outer terms will be described by homogeneous equations subject to 
homogeneous boundary conditions, and thus vanish identically. 

Substitution of the outer expressions into the equations (6.1) for finite 6 yields, 
upon use of the boundary conditions (6.4)-( 6.8) : 

To,, = - Tu - A erfc (2142) + Tom + Fm, 
F .  = - C erfc (x/ 4 2 )  + Tm, 

Frd = - Td + D{erf (Z/2j2) - erf (Zw/42))  + FFU + FB, 
r f ,  = E{erf (x/ 4 2 )  - erf (x,/ 42)) + TB, 

X, = (D - E )  (2/n)+exp ( - iz;)/(aF - Frt0), 
Frw = aF(l f E(D - E)/E} ,  

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 
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where A ,  C', D and E will be found by merging with the inner expansion. These 
outer solutions have the familiar error function form arising from diffusion- 
convection balance, and will be shown to be identical with the thin-flame 
solutions. 

To lowest order the inner equations are 

d2gOl/d72 = gOlyFlexp ( -  B/F*) +O(eg), 

d2gFl/dy2 = golgFlexp ( -  B/T*) + O(e+), 

d2tl/dq2 = - yOlgFl exp ( - B/T*) + O(B+). 

Xchvab-Zeldovitch integrals again reduce this coupled sixth-order set to  a 
second-order equation for one unknown: 

go1 + tl = a y  + pe-4, 

tl = yv  + S€d, 

Writing the constants with e factors is done merely for convenience. 

and outer solutions is carried out in terms of an intermediate limit. If 
Before the inner solution to lowest order is completed, matching of the inner 

then 

- -  
z--z* = Zc ( ( 6 )  where 0 < e+ < ( ( e )  as e+ 0, 

lim (Z-Z*) = st((e)+O 
E + O ,  gf fixed 

2 - 2 ,  - 5&4+ +a* but lim y=--  

Equations (9.1)-( 9.4) are expressed in terms of 5: 
E + O , Z  fixed €9 7 

5 

Feu+ Tu = - A erfc (Z,/\/Z) +Torn + Frn 
+ A (z/+ exp ( - 43;) zt [ ( e )  + . . . , 

+ T, + TFw + D ( 2 / ~ ) 4  exp ( - 42%) Zc[(e) + . . . , 

(9.12) 

TFcl + Td = D{erf (z*/ 2/21 - erf (2,/2/2)} 

(9.13) 

(9.14) 

(9.15) 

Tth = - Cerfc ( z , / ~ / z )  + Trn + ( a / ~ ) * e x p  ( -  42;) ~ ~ [ ( e )  + . ... 
Td = E{erf (2,143) - erf (Zw/2/2)} + TB +E(2/r)*exp ( - &i;) Z,C(e) + . . . . 

Equations (9.7), (9.8), (9.10) and (9.11) give 
- - 

Y O i  + Ti = aZ&(e) + (p+ T*) + ... , 
TFi + Ti = pt ( ( e )  + (8 + T* ) + . . . , 

(9.16) 

(9.17) 

(9.18) Ti + CXZ~ C(e) + (p + T* ) + . . . as 7 + - co, 

Ti-+yzC((e) + (6+ T,) + . .. as y ++ co. (9.19) 
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Matching thesc last two sets to  lowest order, i t  is necessary that 

a = ,4(2/7~)3 exp ( - &z$),  

p+ F* = -A erfc (5,/J2) +Torn + T,, 

6 + !F* = D{erf (z*/ 4 2 )  - erf (zW/ $)} + FFw + TB. 

A = E = (Fom + F, - TB)/erfc (Zw/J2).  

(9.20) 

(9.21) 

(9.23) 

y = D(2/n)+exp ( - $z$)), (9.22) 

Substituting from (9.20) and (9.21) in (9.18), and matching the result to (9.15) 
yields 

Substituting from (9.22) and (9.23) in (9.19), and matching the result to (9.14) 

(9.25) 
yields D = C ( - FFTn + T, - FB)/erfc (Zu,/ J2). 

Equations (9.24) and (9.25) when substituted in (9.5) and (9.6) give 

(9.24) 

(9.26) 

(9.27) 

Inserting from ( 7 . 2 ) ,  (7 .4) ,  and (9.24) in (9.21) gives f i  = 0. Inserting from 
(7.2), (7 .4) ,  and (9.25) in (9.23) gives 6 = 0. Use of the same relations makes it 
possible to manipulate (9.1)-(9.4) into the forms for FF, Fo and T given as the 
thin-flame solution in 3 7. 

Equations (9.9)-(9.11) are now simplified because p = 6 = 0. If 

A = &[-t;+6(“+74711, (9.28) 

(9.29) 

(9.30) 

then (9.9)-(9.11) become 

d2A(X)/dX2 = A2-xx2 (-a < x < a), 
A + x  as x + a ,  

A + - x  as x - f - 0 0 .  

This boundary problem was solved numerically and the solution is given as 
figure 3, in recognition of the fact that A is an even function of x .  An approximate 
closed expression for A ( x )  is given in the Appendix. 

The expression for the temperature in the inner region by (9.28)-(9.30) is 

Ti = F * + ~ ( E + Y )  ( Z - Z y c ) - ( ~ / n ) B A ( ( n / ~ ) ~ ~ ( a - ~ ) ( 5 - z , ) ) .  (9.31) 

Using (9.31) to find dFi/dZ = 0, i t  is found that the maximum temperature 
occurs a t  x J f ,  not in general 5 = X,, where xA$f is given by 

(9.32) 
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If z FB, Toom > T&, dA(X,)/dX > 0 =- xnf > 0 

* maximum temperature occurs on the oxidant side of the thin flame. If 
T, z pB but TFw > yo, it follows similarly that the maximum temperature 
occurs on the fuel side. Only if [2( Fm - FB) + Tom - TFw] = 0 does the maximum 
temperature not become displaced from its thin-flame position 2,. From (9.29) 

- 

XM = a-sg(a - y )  (& - Z*)/€.g. (9.33) 

3.0 - 
2.8 

7.6 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

- 

- 

- 

- 

- 

- 

- 

- 

- 

0 0.2 0.6 1 .o 1 4  1.8 2.2 2.6 3.0 

X 
FIGURE 3. Plot of the solution of d z h / d X 2  = h2 -x2 subject t,o d h ( w ) / d x  -+ 1 anti 

d A ( O ) / d x  = 0. 

Inserting (9.32) and (9.33) in (9.31) 

to lowest order. For large but finite D,, decrease of D, while all the other 
parameters are held fixed implies decrease of Fmax. 

To obtain the error in (9.34) one must proceed to the equations of first order 
governing the inner zone, found by substituting the inner expansion into (6.1) 
and retaining terms of 0(d). This set (and all succeeding sets) of equations is 
linear; the homogeneous operator describes a reaction-diffusion balance and the 
inhomogeneous forcing function represents convection. 

(9.35) 

(9.37) 

m%f) = F* - (./a)+ I A ( X M )  - X M m x M ) / d x I  (9.34) 

d2jjoz/dy2-jjF1g02exp ( -  8/F*)-goljjF2exp ( -  $IT*) = -~+dij,,/dy, 

d2&/dy2+go1ijF2exp(- B/F*)+y,,yO2exp(- 8 /F*)  = -5*dt ; /dy.  

d2'yF~/d~2-~01~F2eXP ( -  B/F*-gF,yO,exp ( -  = -s* dyF,/dy, (9.36) 
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The terms with subscript unity are now known functions of 7, although they 
are known exactly only in tabular form because A required numerical solution. 
The set has been only incompIeteIy dealt with (Fendell 1964) but the adopted 
inner expansion has been justified and (9.34) can be written 

W i M )  = p* - ( E i W  I 4 X M )  -X lwd~(XM) ldXI  + O ( 4 .  (9.38) 

Again, presentation of results for the acetone-in-air case is postponed until 
the intermediate range of reaction rates is examined. 

10. Numerical integration 
The asymptotic expansion for nearly frozen flow under second-order Arrhenius 

kinetics and the asymptotic expansion for nearly thin-flame conditions appear 
to both be valid for a range of intermediate D, but describe quite divergent 
profiles of the dependent variables us Z. For continuous variation of behaviour 
with the parameter D, an intermediate branch is sought numerically (because of 
non-linearities) to join the upper branch (singular perturbation solution) and the 
lower branch (regular perturbation solution). Bifurcation of solution in steady- 
state stability analyses is familiar from several classical problems of continuum 
mechanics. 

For solution on the IBM 7094 computer the non-linear two-point boundary- 
value problem of (6.1), (6.4)-(6.8) was written 

dl'/dZ = V, 

dvld? = - 5% - D, exp ( - BIT) { - T + Yom + Tm - A  erfc (ZlJ2)) 

{ - T+ T,, - Cerfc ( x i$ ) ) ,  
where A = FIFoco + Tm - TB +a,L], 

c = F[~a-~B-oIF(l-~)] ,  

F = Z,/[ZWerfc (%,/,/2) - (2/n)*exp ( - 4231 
- 

subject to T ( a )  = Fm, F(5,J = FB, V ( Z , )  = -apLZW. 

A sequence of initial-value problems were solved by adopting values for ZW 
until a pair leading to values of l' a t  infinity bounding the value !Fm were found- 
infinity being considered reached upon suitably constant behaviour of and 
its first derivative. Once bounding Z, were established linear interpolation in 
the form of a false-position method was used to converge on the correct ZW. The 
integration technique was Runge's version of the fourth-order R ungc-Kutta 
method, as improved by Richardson's extrapolation procedure. 

While solutions for moderate or little burning intensity were readily found, 
the step-size had to be reduced to time-consuming minuteness and the initial 
conditions established precisely for intense-burning solutions. Basically, low- 
order polynomial approximation had difficulty treating the rapidly varying 
behaviour of dependent variables in the boundary-layer regions. 

The results of the numerical integration for the acetone-air data are seen most 
directly from figure 4, in which the maximum temperature is plotted against D,, 
with the analytically computed curves of $5 7 and 8 skctched in. Two reverses in 
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curvature distinguish a lower (weak burning), middle (intermediate burning), 
and upper (intense burning) branch. Thus if the curve of figure 4 is traced from 
D, = 0 to D , + a  a succession of steady states of constantly increased burning 
are passed. The wall position Xu; is constantly receding to algebraically smaller 
2 ,  Fo(Z,) is constantly becoming smaller and FF(zw) larger. A more pronounced 
burning region may be distinguished through which To and yB7 change rapidly 
in value, and more clearly and sharply peaks. Illustration of these statements 
is provided in figures 5 , 6 , 7 ,  and 8. Figure 8 shows that the position of maximum 
temperature does not vary monotonically, like the other quantities: ZM becomes 
smaller unt,il just before the corner between the intermediate and upper branches 

I I I I I I t l 

o 10’ lo3 lo5 lo7 lo9 lolI  1013 loi5 

D, 

FIGUEE 4. Plot of maximum temperature vs first Damkohler similarity group. The solid 
curve is based on numerical results and asymptotic analytic forms. The dotted line is the 
deviating regular-perturbation solution, and the dashed line the deviating singular- 
perturbation expansion. The points are the results of numerical computations. 

of figure 4 is approached; from that corner out to D, + 00, Z M  increases. Physically 
as the upper branch is approached the temperatures being realized are such that 
vaporization is not as important a consideration as establishing the flame near 
the ‘ stoichiometric-ratio position ’. Maintaining that intense burning is occurring 
and yet permitting a significant concentration of oxidant near the wall is 
inconsistent, and the flame moves off. 

One circumstance concerning the role of a in D, deserves further comment. 
Figure 8 implies that, as D, is increased in the vicinity of D, = 5 x for a 
system on the weak-burning branch, the system must spontaneously ignite. 
A means of increasing D, would be to decrease u, the strength of blowing of 
oxidant from upstream infinity. That mere reduction of the supply of convected 
oxidant should cause the system to burst into flames may seem to contradict 
one’s physical intuition. Actually, however, an examination of the geometric 
scales resolves the difficulty. D, = 5 x => a z 5 x 10-5sec-1 for acetone in 
air, and the wall is about 4.25in. from the stagnation plane. The velocity of a 
fluid element near the wall is then 4 x 10-4in./sec and the element would require 
$ h  to move an inch. In  fact, an oxidant particle would have to be 275yd. 
upstream of the stagnation plane to move a t  1 in./sec. Obviously a disturbance 
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FIGURE 5. A typical solution from the low-burning branch. D, = loB; P,, = -0.1402; 
YFw = 0.5284; Tow = 0.2816; (dCP/dZ)max = 7 . 6 0 0 ~  
- 

a t  Z = P,. 

Po 

2.4 ";t i 

FIGURE 6. 
p,, 

-2  

A typical solution from the intermediate branch. D, = lo8; 
= 2.3775; Pow = 4.4989 x at 2 (d~/dZ)max w 6.659 x 

Z, = - 0'9434; 
w 0.66. 
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FIGURE 7. A typical solution from the intense-burning branch. D, = 3.5 x lo5; 
2, = - 1.2704; FFFtL. = 2.1287; (dT/dZ),,,,, % 0.2778 at 2 x 1.23. 
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FIGURE 8. Plot of Z,,, Z,n, FF,r and pow ws T,w. T, Tinax. temperature; Zni = posi- 
tion of p M ;  P ,  = position of two-phase interface; Yo,  = oxidant concentration at  
z W ;  FFw = fuel concentration a t  z,. 
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of even the slightest magnitude would upset the flow field completely. Further- 
more, Arrhenius kinetics predicts a finite though small probability of resetion- 
inducing collision occurring even for temperatures of the order of 500-600 OR. 
Thus in the long time required for a particle to be convected through the region 
where oxidant and fuel are both plentiful, most reactants could quite reasonably 
pass to product. Considerable time wouId be required for the heat released in 
the exothermic reaction to be removed from the vicinity of the reaction in the 
large-scaled system being discussed. The temperatures would be locally increased, 
and this in turn would greatly raise the likelihood of reaction under Arrhenius 
kinetics. Thus sudden ignition under reduced blowing could reasonably occur in 
the system under analytic study, but such a system could only be realized under 
impossibly ideal laboratory conditions. 

1 1. Conclusions 
The problem of stagnation-region combustion of initially separated reactants 

has served as a means of examining the sufficiency of a simple model of the 
chemical kinetics to describe ignition and extinction. The role of the first 
Damkohler similarity group, the ratio of the time for a fluid particle of reactant 
to traverse the combustion zone to the time for a reaction-inducing collision 
to occur, has been clarified. For small D, there ought to be mainly diffusion and 
convection; for large D,, vigorous spatially confined reaction. By use of the 
thermal profile as a guide for exothermic reactions this intuitive dependence has 
been confirmed. Finally Burke-Schumann kinetics has been shown (not 
assumed) to be the natural limit of Arrhenius kinetics as D,+co. 

Furthermore, unlike Burke-Schumann kinetics, Arrhenius kinetics has been 
shown to be able to describe ignition and extinction according to the following 
speculative interpretation of the bifurcated, three-branched steady-state solution 
presented in fj 9. The middle branch is physically unstable and rarely observed; 
a system existing in such a condition will move toward the weak- or strong- 
burning branches, which are stable and normally observed. A system ignites 
when it jumps from the weak branch to the strong branch; suddenly, intense 
combustion instead of almost no combustion becomes the preferred state. This 
situation probably occurs as D, increases for a system on the lower branch. 
Analogously, as D, decreases for a system on the upper branch, it would have 
increasing propensity under sufficiently strong perturbation to cross over 
suddenly to the weak branch: this is extinction. Only a stability analysis with 
time development could suggest which transitions are possible or likely. 

Appendix 
An approximate closed form for A will now be developed by means of a crude 

application of certain techniques developed by Meksyn for second-order ordinary 
differential equations with rapidly decaying second derivative. Figure 3 suggests 
that A possesses this property. The presentation of the method will be such that 
techniques for improving the approximation will be apparent. 

Meksyn proposes writing 

d2A/dx2 = A2- x2 = exp[ - F ( x ) ]  $(x), 
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where #(x) and F ( x )  are expressed as power series in x, the coefficients of which 
are to be determined. # is a slowly varying function of x. Here q3 is taken as 
a constant and P = a1 +a2x+a,x2. Because A is an even function of x ,  a2 = 0 
and 

d2A/dX2 = A2 - x2 = u4exp ( - a3X2). 

The zero moment of this equation over 0 6 x 6 a3 yields in the light of 
(dA/dX)x=o = 0 and (dA/dX)x+, = 1, a3 = gain. Also, 

A2(0) = a4, 

where A(0) = 0.8657 (from the exact numerical solution). Thus 

A = {x2 + 0.7494 exp ( - 0.5SS6x2),>4. 

The author wishes to acknowledge with gratitude many very helpful and 
stimulating discussions with Profs G. F. Carrier and H. W. Emmons, who sug- 
gested the problem. He is also grateful for digital and analogue computer time 
furnished by Harvard University and the Missile Systems Division of Raytheon 
Company. This work was supported in the main by Nonr Contract 1866(34), 
administered by Prof. G. D. Birkhoff. 

Partial list of symbols 
scale factor in inviscid incompressible axisymmetric stagnation flow, 

stoichiometric coefficient of oxidant 
frequency factor in Arrhenius kinetics, here (volume/time mole) 
effective heat capacity a t  constant pressure for a gas mixture 
mass transfer coefficient (binary diffusion coefficient) of Fick’s law 

first Damkohler similarity group, here pbdB/Zanz 
stoichiometric coefficient of fuel 
fuel 
specific enthalpy 
specific enthalpy of formation at some reference temperature To 

specific heat released by combustion 
differential operator 
heat of vaporization (or sublimation)/heat of combustion 
Lewis-Semenov number, D / x  

time-l 

(area/time) 

AHcIdm, 

n n 

K=l  K=1 
m,v,K= mKvB 

molecular weight of species K,  mass of Klmole of K 
molar concentration of K ,  moles of Klvolume 
total number of species present 
oxidant 
stoichiometric coefficient for the product 
pressure or product 
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radial co-ordinate F = ( a / D ) b  
reaction rate (moles/vol. sec) 
temperature T = T/(Ah,/a,m,) 
radial component of velocity 
macroscopic velocity of mixture 
axial component of velocity 
mass fraction of species K ,  p,/p 
stoichiometrically adjusted mass fraction of species K: ag YK 
axial co-ordinate Z = (2a/D)*2 

Greek symbols 
m/ [  (vf - v F) mK] 
Dcl in tj 9 and D, exp ( - B/T,) in 8 8 
(2 - X*) E-+ where e = Dil  
e/(Ahc/a,mF) where 6' is the activation temperature of Arrhenius kinetics 
solution of a boundary-value problem arising for large D, 
thermal conductivity of Fourier's law 
stoichiometric coefficient of the reactant K 
stoichiomet$ric coefficient of the product K 
a function of E used in matching expansions 

n 

K = l  
C pK where pK is the density of species K 

an independent variable related to 7 ; also, thermometric conductivity 
stream-function 
mass rate of production of species K (mass of Klvol. time) 

Subscripts and superscripts 

downstream outer expansion 
fuel 
inner expansion 
any species present 
maximum 
oxidant 
product 
upstream outer expansion 
two-phase interface 
non-dimensionalized or stoichiometrically adjusted 
intermediate variable used in matching expansions 
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